

All Tools for the Download

You will find all documents and information which you need for making a decision, for calculation as well as the installation and application of the BSW vibration technology products, at www. bsw-vibration-technology.com. In a matter of seconds you can download technical datasheets, certificates and installation instructions, all in the required file formats.

Up to date information is provided on our website and in the PDF versions of this catalogue. The PDF versions are available for download on our website.

The website www.bsw-vibration-technology.com serves mainly as a planning basis for architectural acoustics and construction engineers. You must register to use the technical documents. BSW will send you your user name and password right away. Since being put up in January 2010, this website already has several hundred registered users.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.011 N/mm²

Continuous and variable loads/operating load range

0 to 0.016 N/mm²

Peak loads (rare, short-term loads)

0.5 N/mm²

Static modulus of elasticity	Based on EN 826	0.06 - 0.16	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.15 - 0.38	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.28	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	1.6	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.31	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	220	%	
Tear resistance	Based on DIN ISO 34-1		N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8		Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	14	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	34		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	49	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

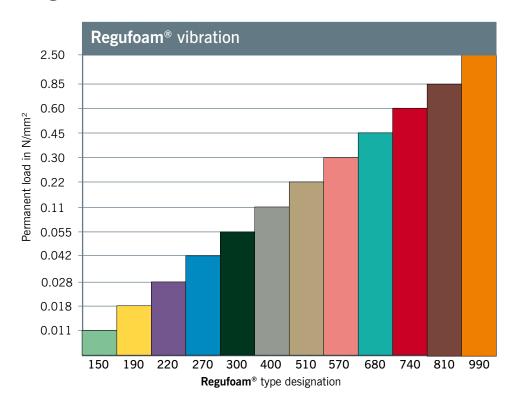
-0.30

-0.22

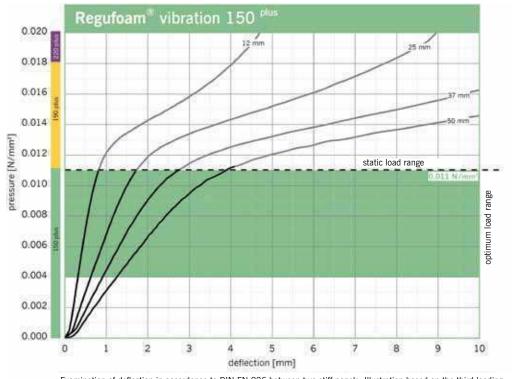
0.11

-0.055

0.042


-0.028

-0.018


-0.011

190plus

510plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

Vibration Isolation

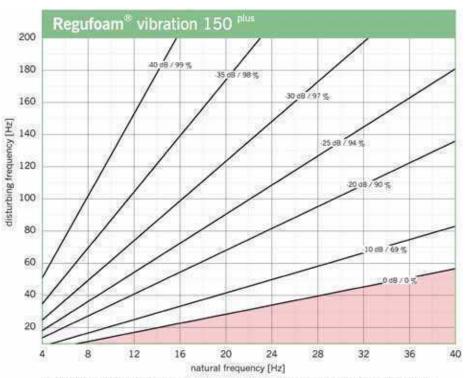
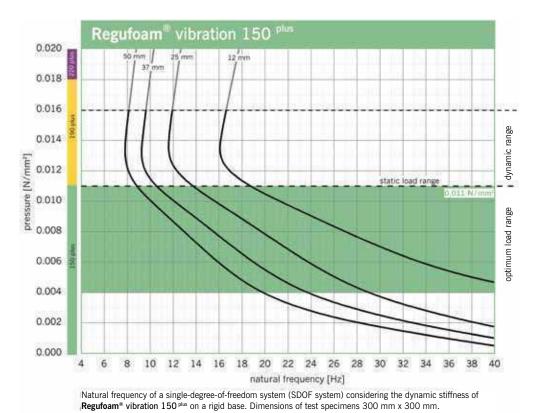
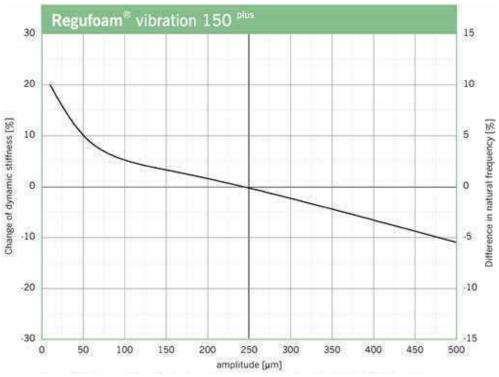
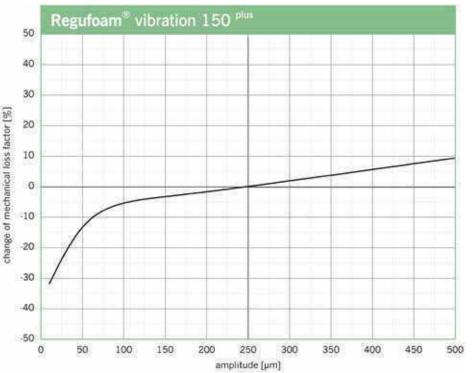



Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 150 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.


Natural Frequency



Influence of Amplitude

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.011 N/mm^2 , dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.011\ N/mm^2$, dimensions of the specimens $300\ mm\ x\ 300\ mm\ x\ 25\ mm$.

Regufoam®

vibration 150 plus

Regufoam®

Modulus of Elasticity

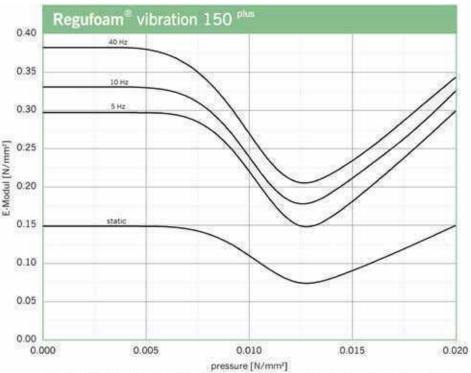


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

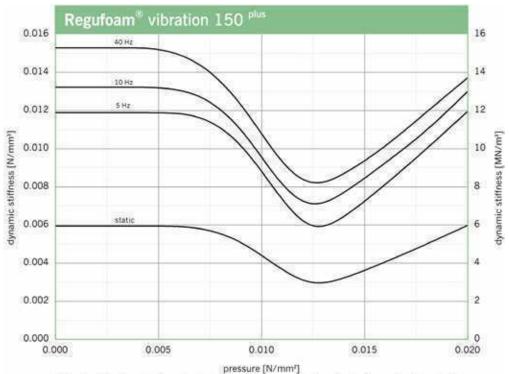
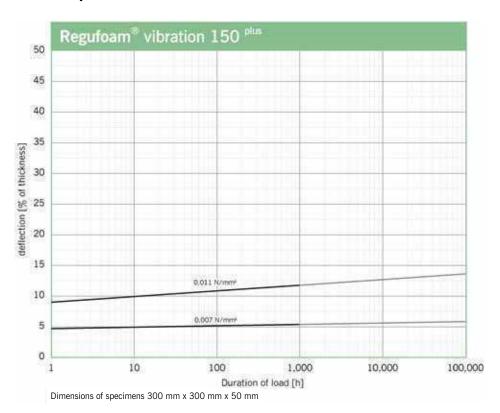



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

-0.85

-0.60

-0.45

snId066

810plns

e80plus

510plus

400plus

150 plus

10

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

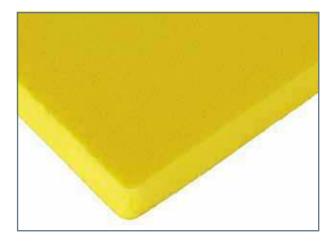
Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load


0.018 N/mm²

Continuous and variable loads/operating load range

0 to 0.028 N/mm²

Peak loads (rare, short-term loads)

0.8 N/mm²

Static modulus of elasticity	Based on EN 826	0.1 - 0.25	N/mm ²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.25 - 0.55	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.25	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	2.0	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.4	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	220	%	
Tear resistance	Based on DIN ISO 34-1	2.0	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	22	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	35	%	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	61	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

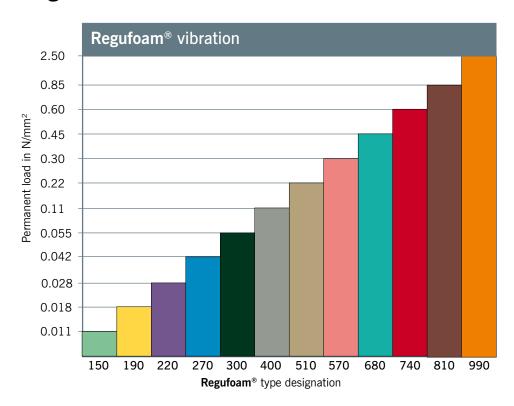
-0.30

-0.22

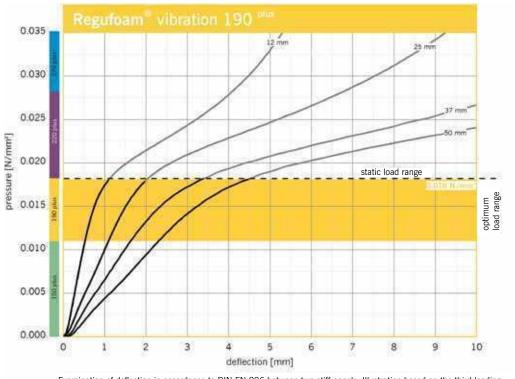
0.11

-0.055

0.042


-0.028

-0.018


0.011

150 plus

510plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

-0.85

-0.60

-0.45

-0.30

0.22

0.11

-0.055

-0.042

-0.028

-0.018

-0.011

5

81

Vibration Isolation

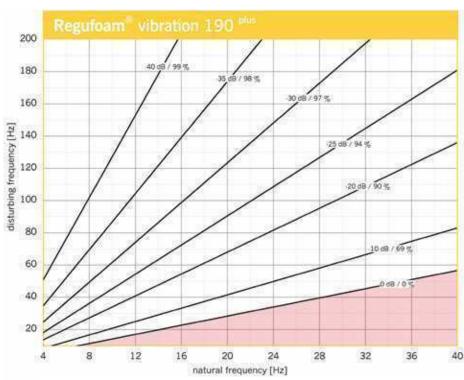
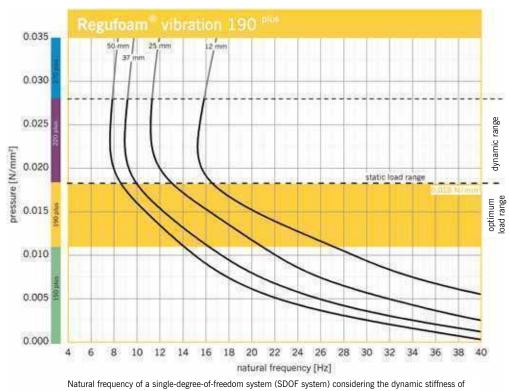



Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with Regufoam® vibration 190 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency

Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of **Regufoam®** vibration 190 ^{plus} on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.018 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

Modulus of Elasticity

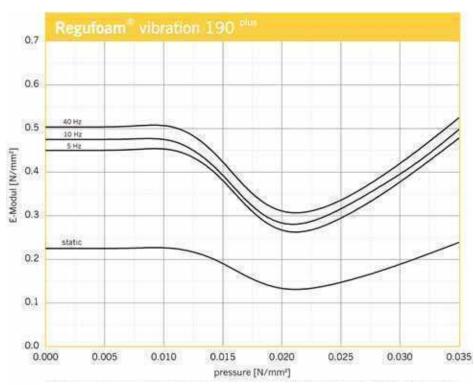


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

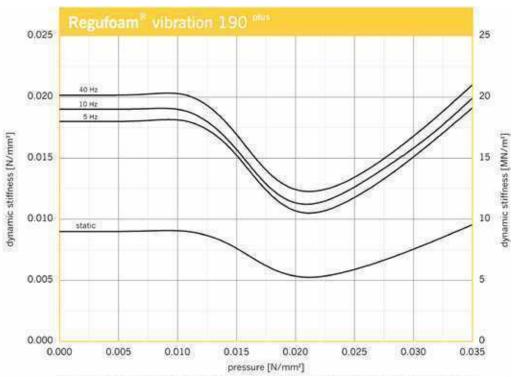
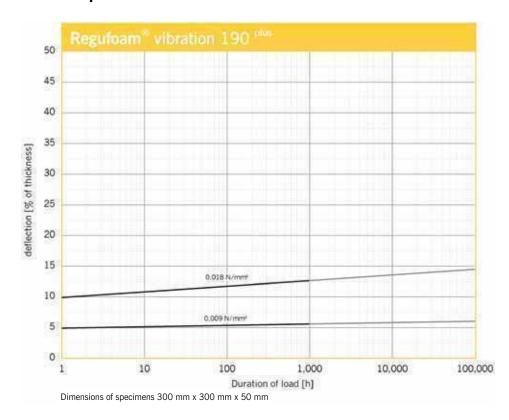



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

snId066

810plus

e80plus

510plus

190plus

150 plus

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.028 N/mm²

Continuous and variable loads/operating load range

0 to 0.04 N/mm²

Peak loads (rare, short-term loads)

0.9 N/mm²

Static modulus of elasticity	Based on EN 826	0.15 - 0.35	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.35 - 0.75	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.22	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	2.3	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.5	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	180	%	
Tear resistance	Based on DIN ISO 34-1		N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	39	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	47		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	69	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

-0.30

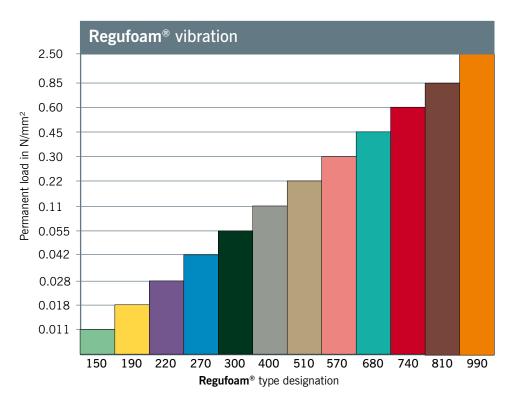
-0.22

0.11

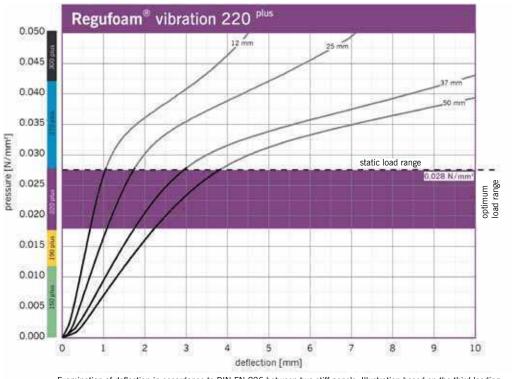
-0.055

0.042

0.028


-0.018

-0.011


190plus

150 plus

510plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm \times 300 mm.

-0.85

-0.60

-0.45

0.30

0.22

0.11

-0.055

-0.042

0.028

-0.018

-0.011

5

 ∞

Vibration Isolation

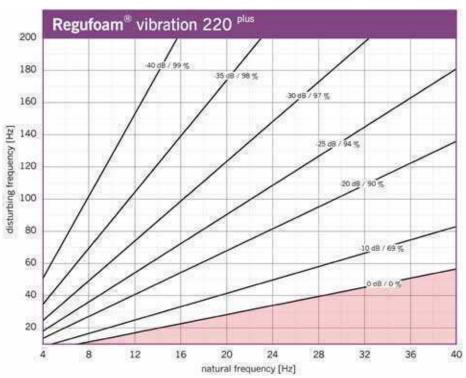
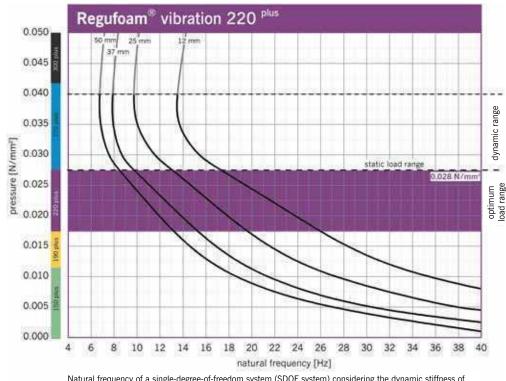
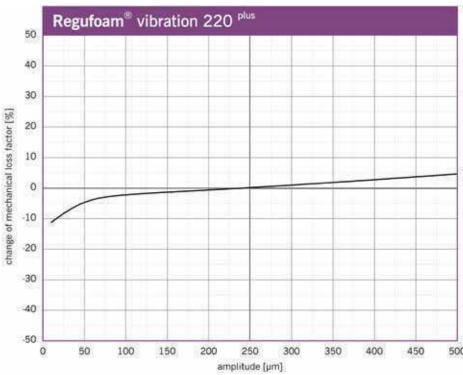




Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam**® vibration 220 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency



Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of **Regufoam®** vibration 220 plus on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.028 N/mm^2 , dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.028~\text{N/mm}^2$, dimensions of the specimens $300~\text{mm} \times 300~\text{mm} \times 25~\text{mm}$.

Modulus of Elasticity

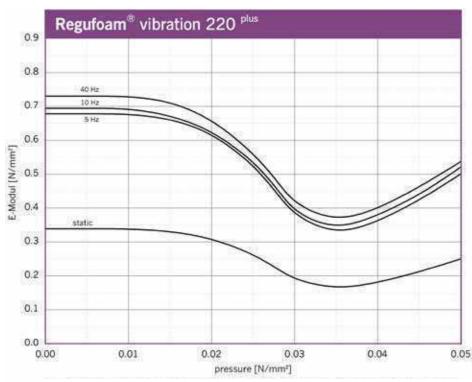


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

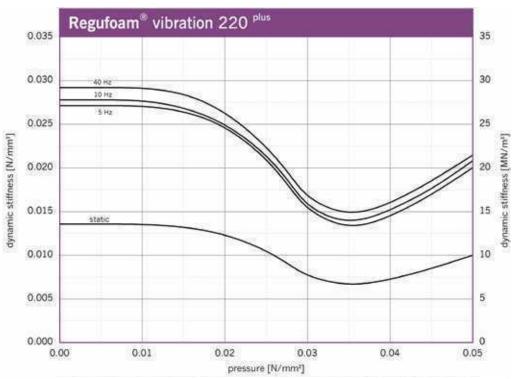
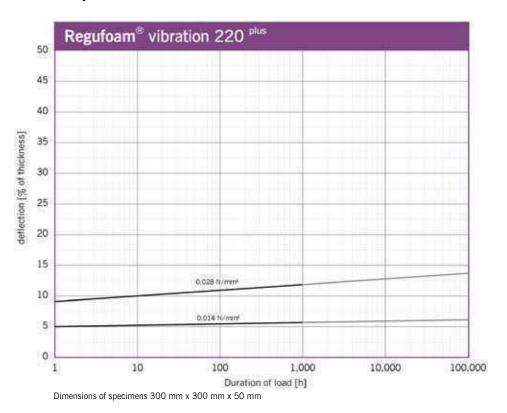



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

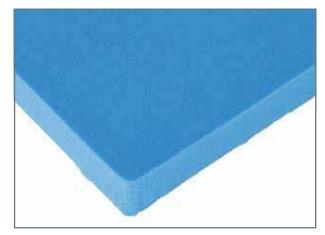
Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load


0.042 N/mm²

Continuous and variable loads/operating load range

0 to 0.062 N/mm²

Peak loads (rare, short-term loads)

1.2 N/mm²

Static modulus of elasticity	Based on EN 826	0.25 - 0.45	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.60 - 1.05	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.2	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.2	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	0.9	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	210	%	
Tear resistance	Based on DIN ISO 34-1	4.5	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	63	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	38	%	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	70	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

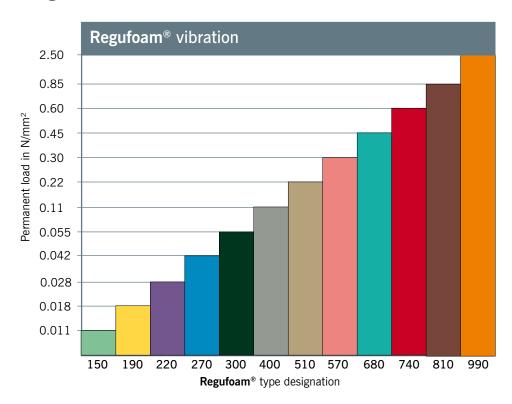
-0.30

-0.22

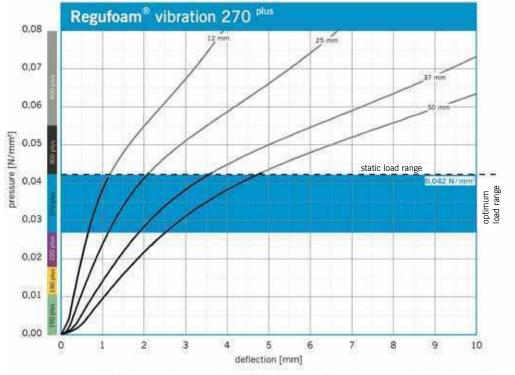
0.11

-0.055

-0.028


-0.018

-0.011


190plus

150 plus

510plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm \times 300 mm.

-0.85

-0.60

-0.45

0.30

0.22

0.11

-0.055

-0.042

-0.028

-0.018

-0.011

5

8

Vibration Isolation

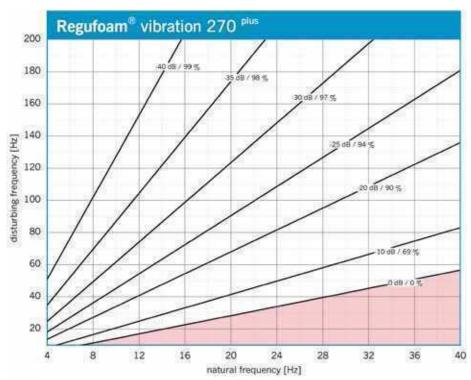
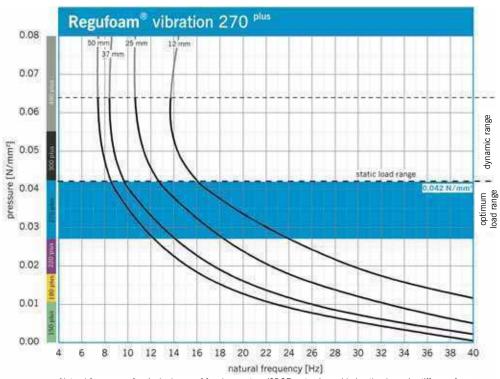
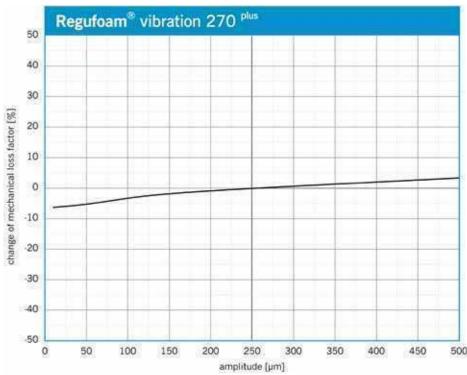




Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 270 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency



Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of $\textbf{Regufoam}^{\text{\tiny{\$}}}$ vibration 270 $^{\text{\tiny{plus}}}$ on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.042 N/mm^2 , dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.042\ N/mm^2$, dimensions of the specimens $300\ mm\ x\ 300\ mm\ x\ 25\ mm$.

Regufoam®

vibration 270 plus

Regufoam®

Modulus of Elasticity

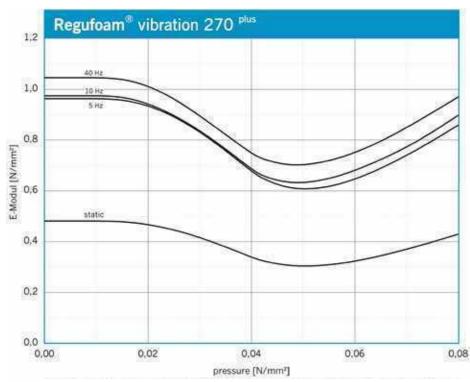


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

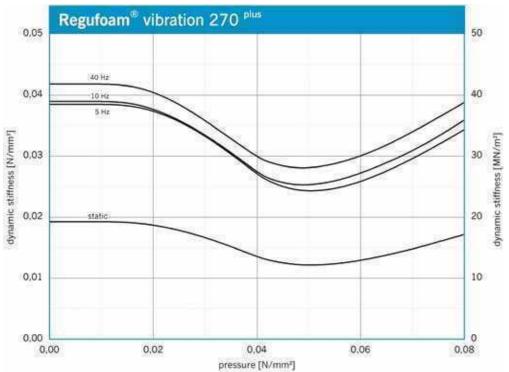
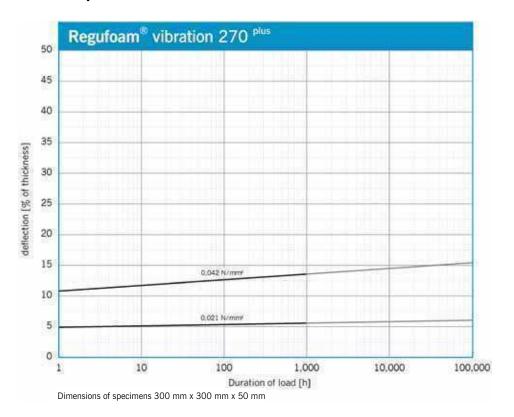



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.055 N/mm²

Continuous and variable loads/operating load range

0 to 0.08 N/mm²

Peak loads (rare, short-term loads)

2 N/mm²

Static modulus of elasticity	Based on EN 826	0.35 - 0.58	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	0.68 - 1.25	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.18	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.4	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798		N/mm²	
Elongation at break	Based on DIN EN ISO 1798	240	%	
Tear resistance	Based on DIN ISO 34-1	4.8	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.75	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	82	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	44		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	72	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

-0.30

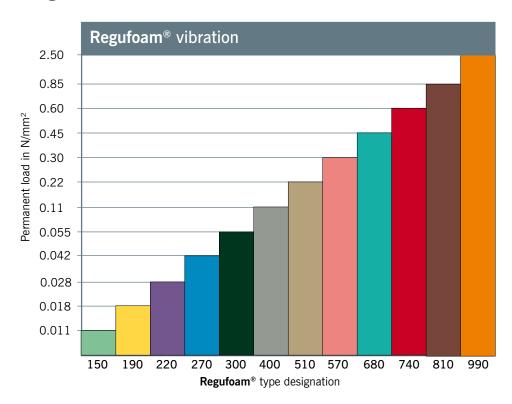
-0.22

0.11

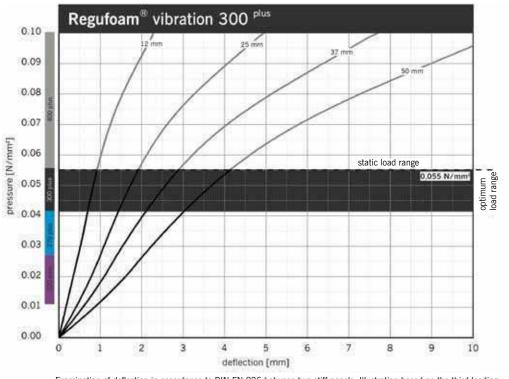
-0.055

0.042

-0.028


-0.018

-0.011


190plus

150 plus

510plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

-0.85

-0.60

-0.45

0.30

0.22

0.11

-0.055

-0.042

-0.028

-0.018

-0.011

8

Vibration Isolation

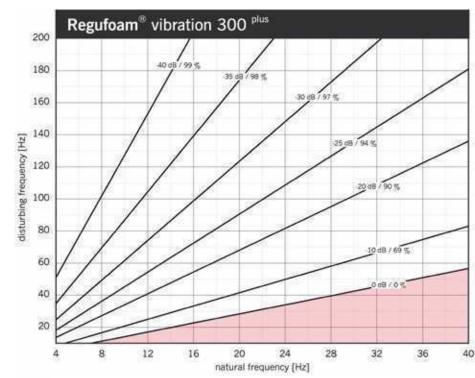
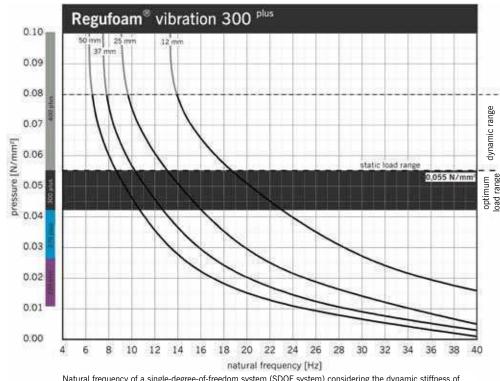
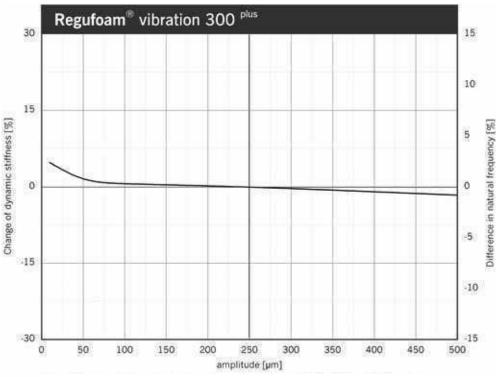
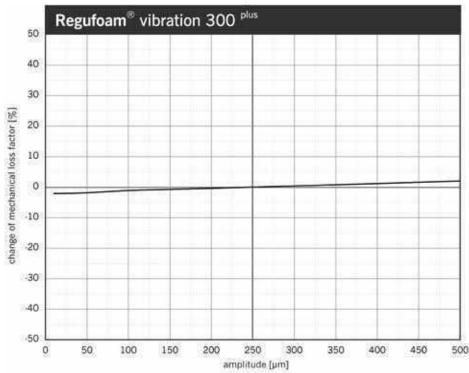



Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 300 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.


Natural Frequency


Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of $Regufoam^{\circ}$ vibration 300 $^{\text{plus}}$ on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of $0.055 \, \text{N/mm}^2$, dimensions of the specimens $300 \, \text{mm} \, \text{x} \, 300 \, \text{mm} \, \text{x} \, 25 \, \text{mm}$. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.055~\text{N/mm}^2$, dimensions of the specimens $300~\text{mm}\,\text{x}~300~\text{mm}\,\text{x}~25~\text{mm}$.

vibration 300 plus

Regufoam®

Modulus of Elasticity

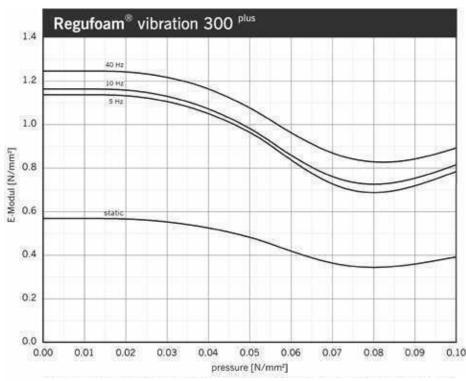


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

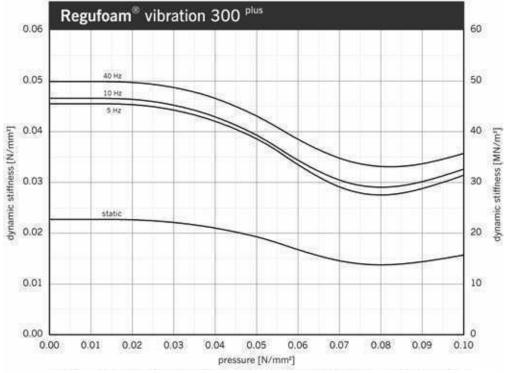
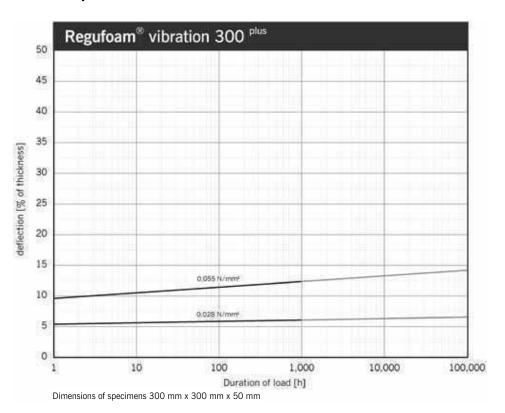



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

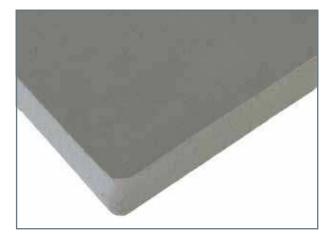
Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load


0.11 N/mm²

Continuous and variable loads/operating load range

0 to 0.16 N/mm²

Peak loads (rare, short-term loads)

up to 3 N/mm²

Static modulus of elasticity	Based on EN 826	0.6 - 1.0	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	1.2 - 2.0	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.17	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	3.9	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	1.5	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	220	%	
Tear resistance	Based on DIN ISO 34-1	6.0	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	170	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	57		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	68	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

-0.30

-0.22

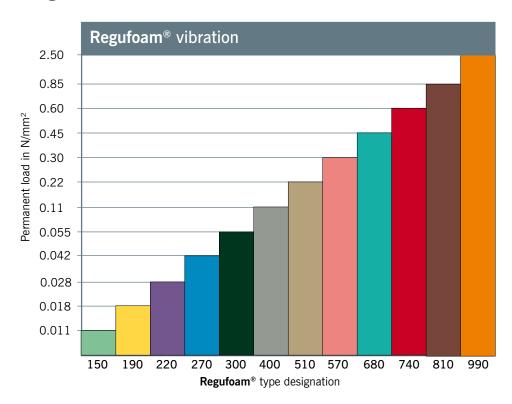
0.11

-0.055

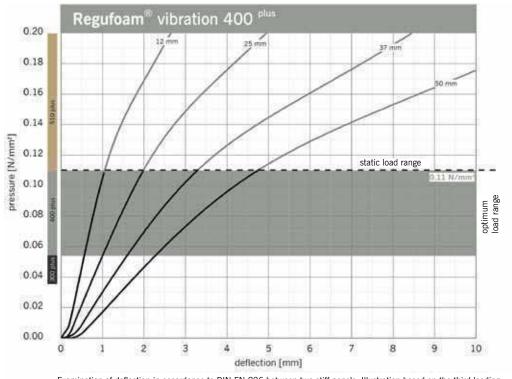
0.042

-0.028

-0.018


-0.011

190plus


150 plus

510plus

snld066

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm \times 300 mm.

-0.85

-0.60

-0.45

0.30

0.22

0.11

-0.055

-0.042

-0.028

-0.018

-0.011

5

8

Vibration Isolation

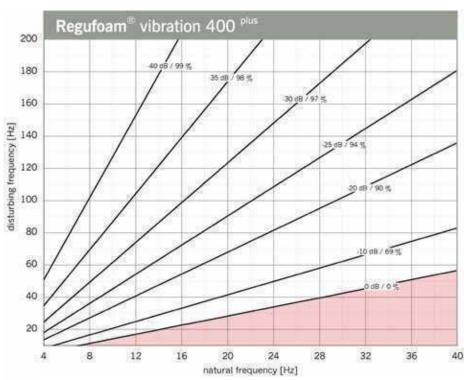
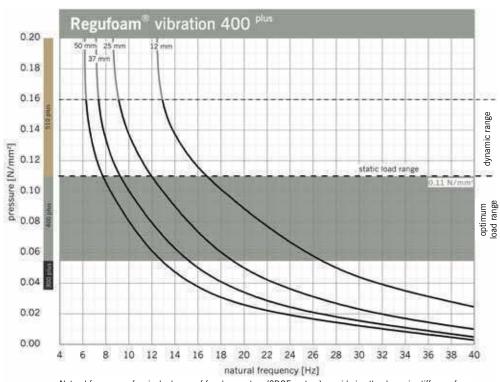
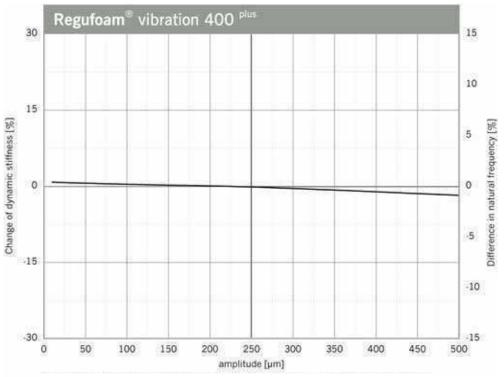
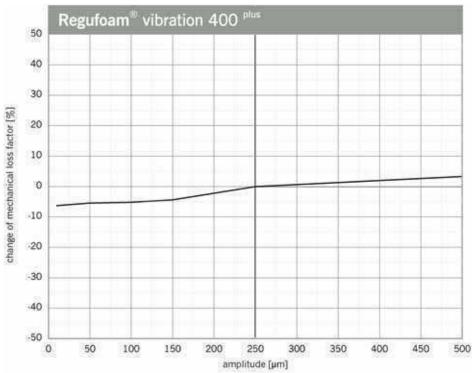



Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 400 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.


Natural Frequency


Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of $Regufoam^{\circ}$ vibration 400 plus on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.11 N/mm^2 , dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.11 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

Modulus of Elasticity

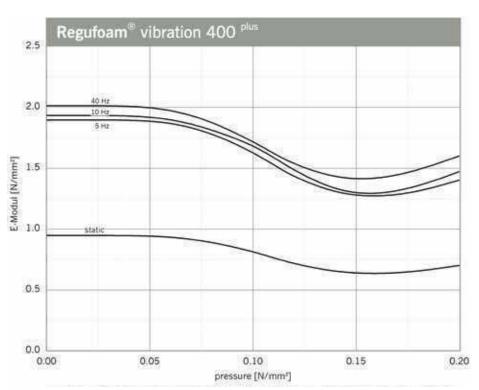


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

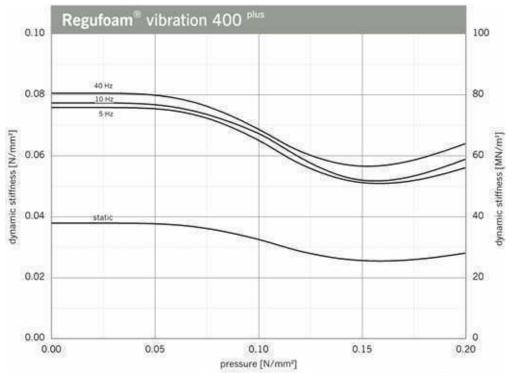
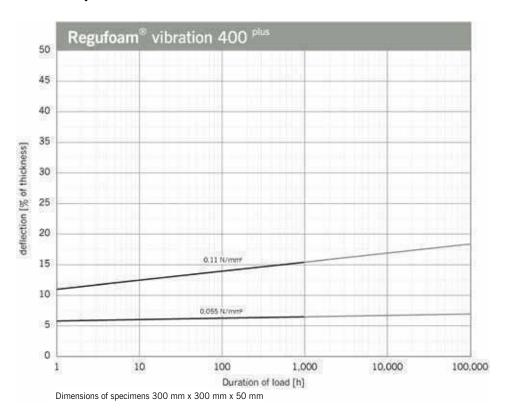



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.22 N/mm²

Continuous and variable loads/operating load range

0 to 0.32 N/mm²

Peak loads (rare, short-term loads)

up to 4 N/mm²

Static modulus of elasticity	Based on EN 826	1.1 - 1.7	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	2.2 - 3.7	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.15	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.2	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798		N/mm²	
Elongation at break	Based on DIN EN ISO 1798	240	%	
Tear resistance	Based on DIN ISO 34-1	9.3	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.7 0.8	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	330	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	60		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	61	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

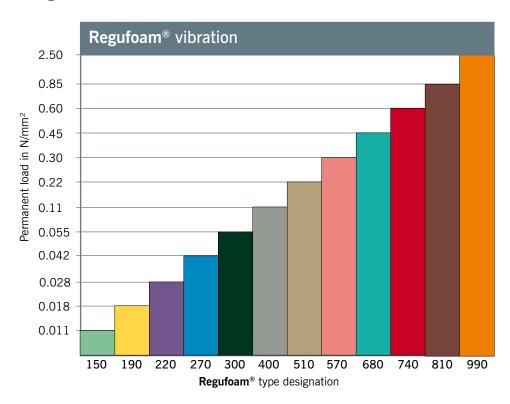
-0.30

-0.22

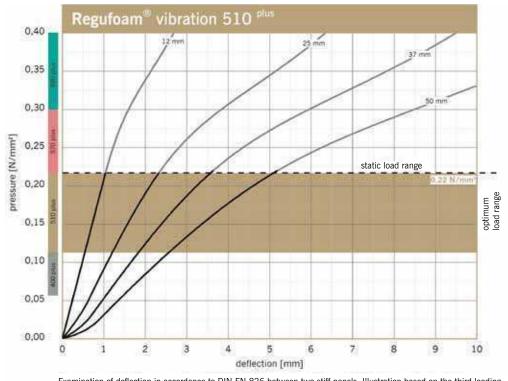
-0.11

-0.055

0.042


-0.028

-0.018


-0.011

190plus

150 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm \times 300 mm.

-0.85

-0.60

-0.45

-0.30

0.22

0.11

-0.055

-0.042

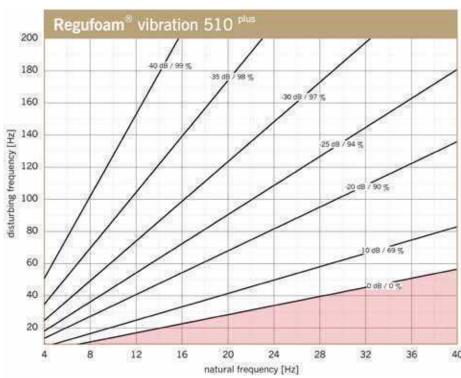
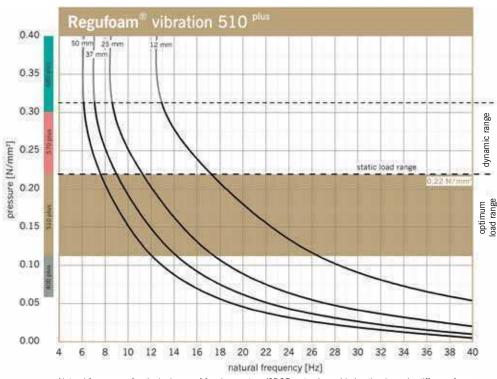
0.028

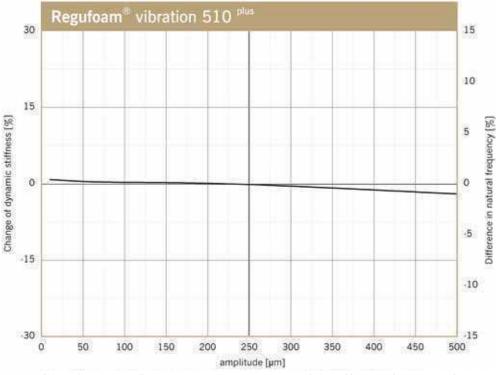
-0.018

-0.011

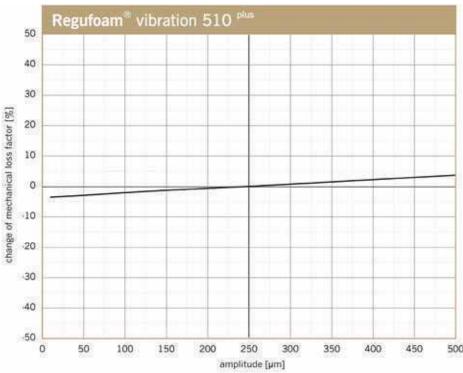
8

Vibration Isolation


Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 510 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency



Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of $Regufoam^{\circ}$ vibration 510 plus on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.22 N/mm^2 , dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.22\ N/mm^2$, dimensions of the specimens $300\ mm\ x\ 300\ mm\ x\ 25\ mm$.

Regufoam®

vibration 510 plus

Regufoam®

vibration 510 plus

Modulus of Elasticity

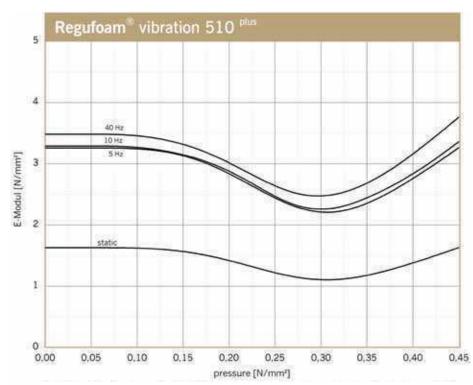


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

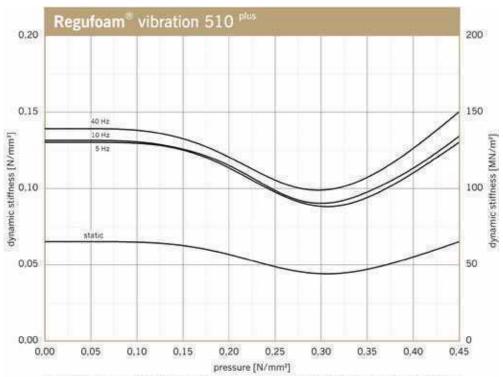
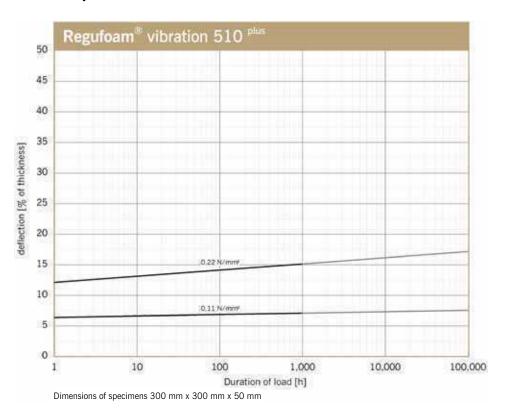



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.30 N/mm²

Continuous and variable loads/operating load range

0 to 0.42 N/mm²

Peak loads (rare, short-term loads)

up to 4.5 N/mm²

Static modulus of elasticity	Based on EN 826	2.6 - 2.7	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	5.1 - 6.3	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.14		Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.4	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	2.9	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	210	%	
Tear resistance	Based on DIN ISO 34-1	14.1	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7		Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	620	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	50	%	dependent on thickness, test specimen h = 25 mm

10

N/mm² ----2.50

-0.85

-0.60

-0.45

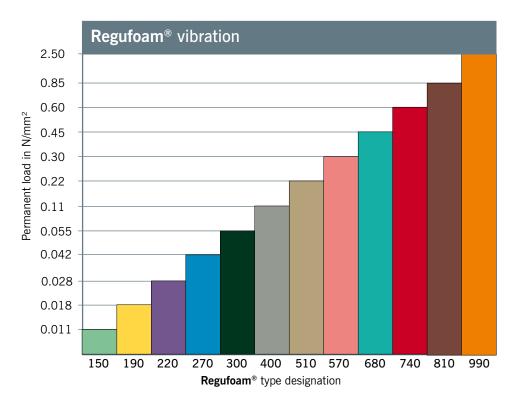
-0.30

-0.22

0.11

-0.055

0.042


-0.028

-0.018


-0.011

190plus

150 plus

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 300 mm x 300 mm.

-0.85

-0.60

-0.45

-0.30

0.22

0.11

-0.055

-0.042

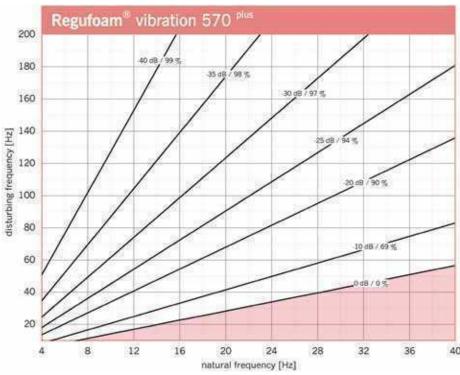
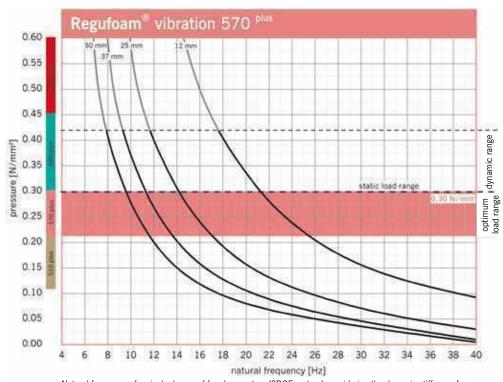
0.028

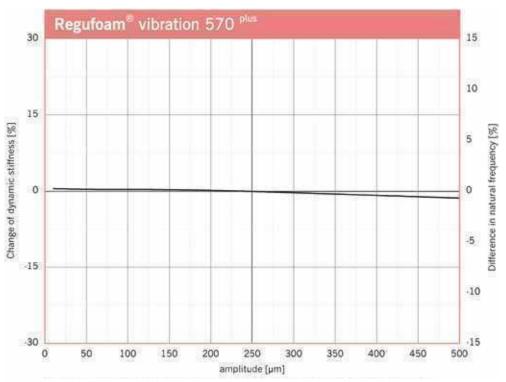
-0.018

-0.011

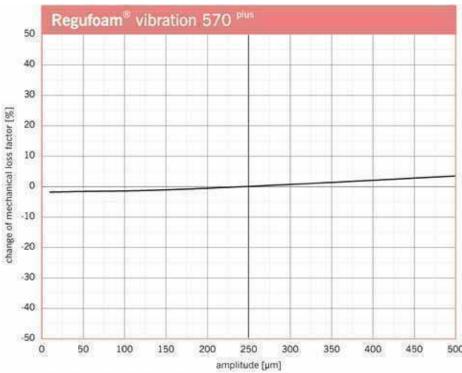
8

Vibration Isolation


Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 570 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency



Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of $Regufoam^{\circ}$ vibration 570 plus on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of $0.30 \, \text{N/mm}^2$, dimensions of the specimens $300 \, \text{mm} \, \text{x} \, 300 \, \text{mm} \, \text{x} \, 25 \, \text{mm}$. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.30\ N/mm^2$, dimensions of the specimens $300\ mm\ x\ 300\ mm\ x\ 25\ mm$.

vibration 570 plus

Regufoam®

Modulus of Elasticity

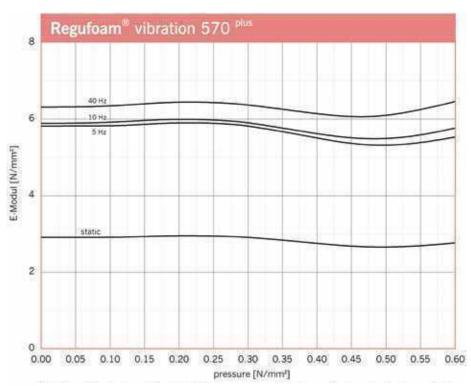


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

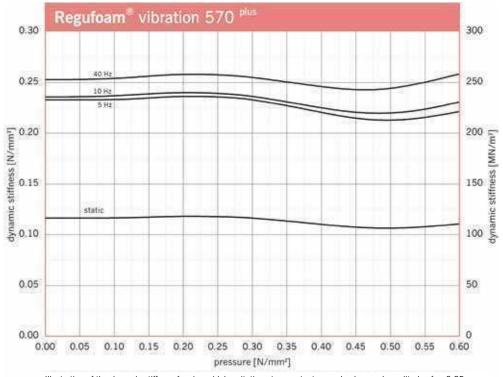
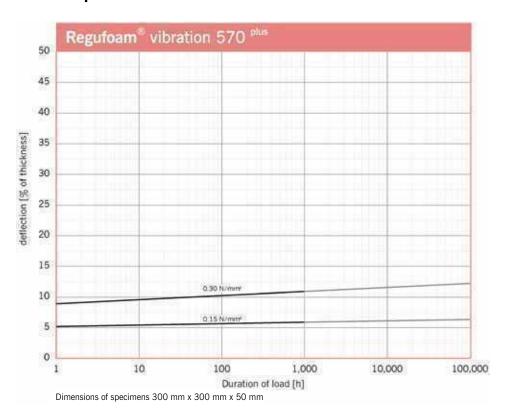



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.45 N/mm²

Continuous and variable loads/operating load range

0 to 0.62 N/mm²

Peak loads (rare, short-term loads)

up to 5 N/mm²

Static modulus of elasticity	Based on EN 826	2.0 - 2.9	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	6.8 - 10.0	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.12		Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	6.2	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	3.6	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	230	%	
Tear resistance	Based on DIN ISO 34-1	18.5	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	840	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58	%	dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	44	%	dependent on thickness, test specimen h = 25 mm

N/mm² ----2.50

-0.85

-0.60

-0.45

-0.30

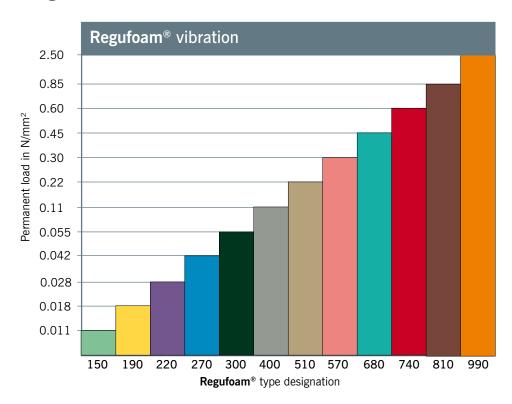
-0.22

0.11

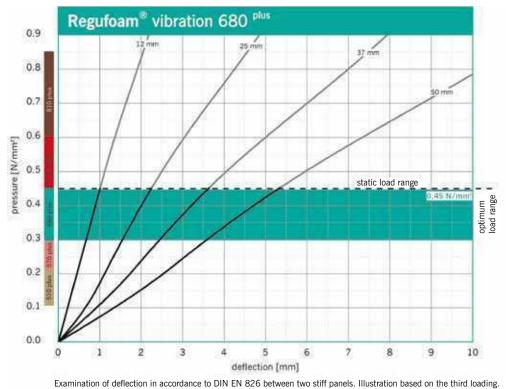
-0.055

0.042

-0.028


-0.018

-0.011


190plus

150 plus

510plus

Load Deflection

N/mm² -2.50

-0.85

-0.60

-0.45

0.30

0.22

0.11

-0.055

-0.042

-0.028

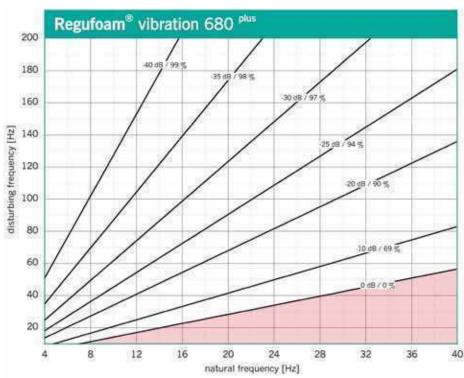
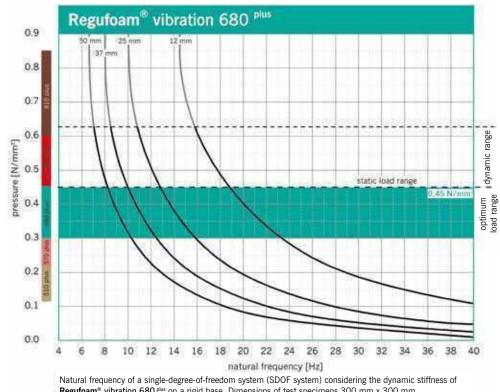
-0.018

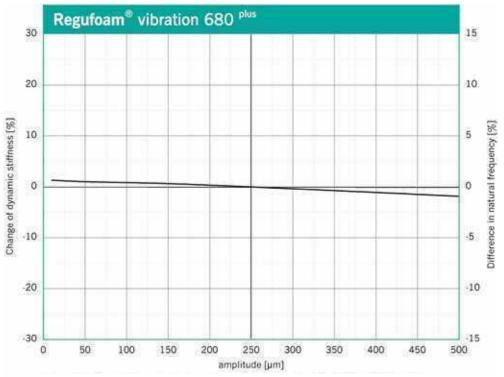
-0.011

5

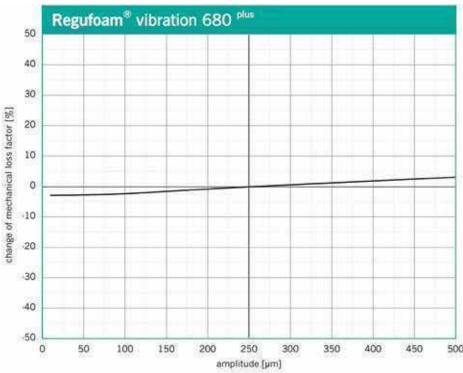
 ∞

Vibration Isolation


Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with Regufoam® vibration 680 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency



Regufoam® vibration 680 plus on a rigid base. Dimensions of test specimens 300 mm x 300 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of 0.45 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.45 N/mm², dimensions of the specimens 300 mm x 300 mm x 25 mm.

vibration 680 plus

Regufoam®

vibration 680 plus

Modulus of Elasticity

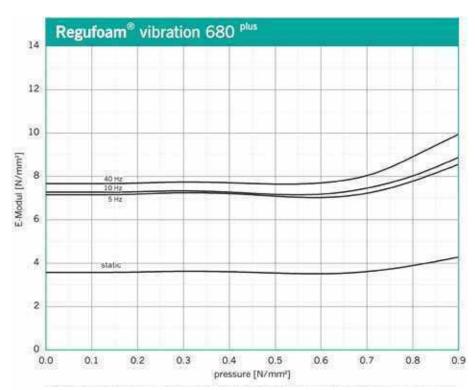


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

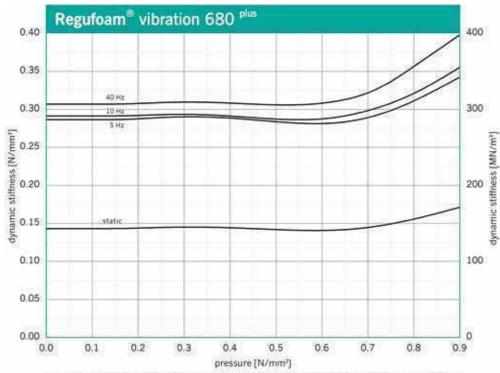
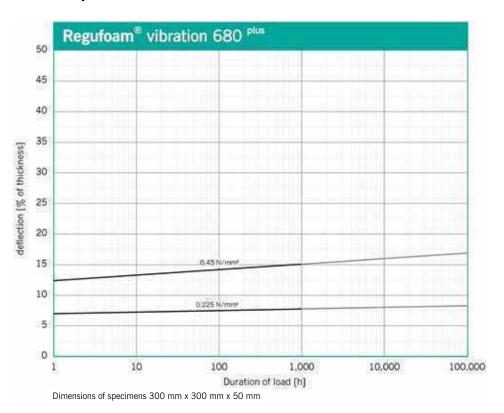



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 300 mm x 300 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

N/mm²

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.60 N/mm²

Continuous and variable loads/operating load range

0 to 0.85 N/mm²

Peak loads (rare, short-term loads)

up to 6 N/mm²

Static modulus of elasticity	Based on EN 826	4.3 - 5.9	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	7.9 - 13.0	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.11		Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	4.8	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	4.0	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	210	%	
Tear resistance	Based on DIN ISO 34-1	19.0	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.7	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	1050	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	59		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	39	%	dependent on thickness, test specimen h = 25 mm

Load Ranges

N/mm² ----2.50

-0.85

-0.60

-0.45

-0.30

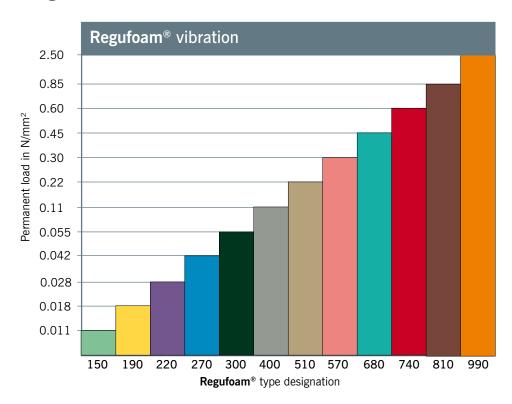
-0.22

0.11

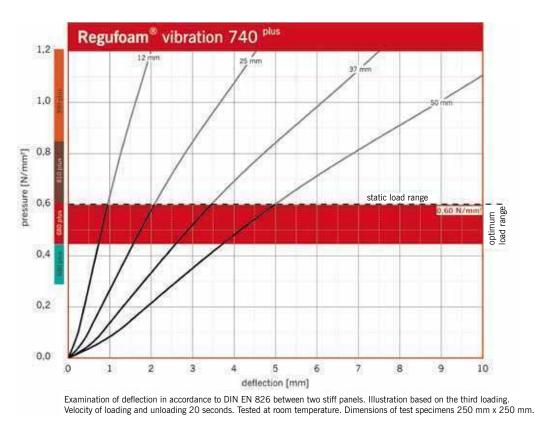
-0.055

0.042

-0.028


-0.018

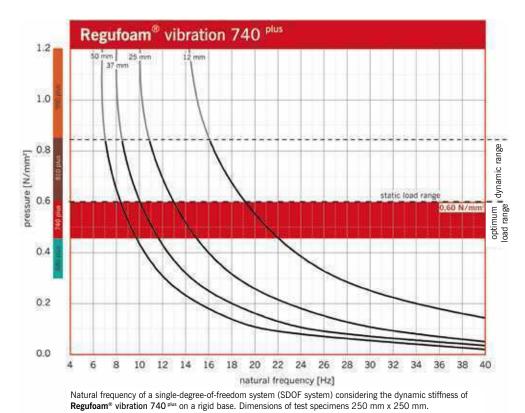
-0.011


190plus

150 plus

510plus

Load Deflection



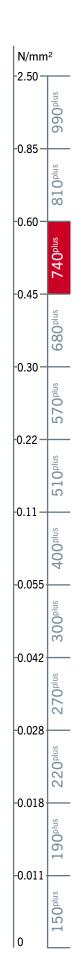
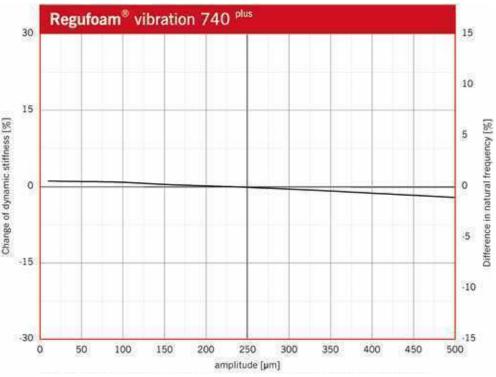
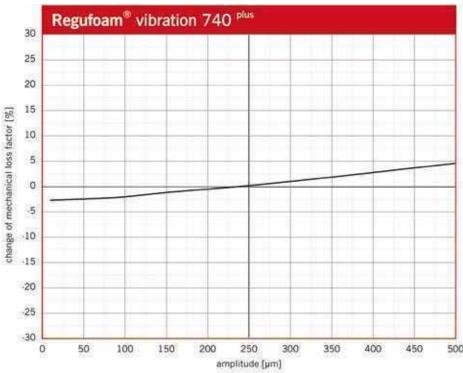

Vibration Isolation

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam**® vibration 740 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.


Natural Frequency



Influence of Amplitude

Regufoam®

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of $0.60 \, \text{N/mm}^2$, dimensions of the specimens 250 mm x 250 mm x 50 mm. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change of the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of 0.60 N/mm^2 , dimensions of the specimens $250 \text{ mm} \times 250 \text{ mm} \times 50 \text{ mm}$.

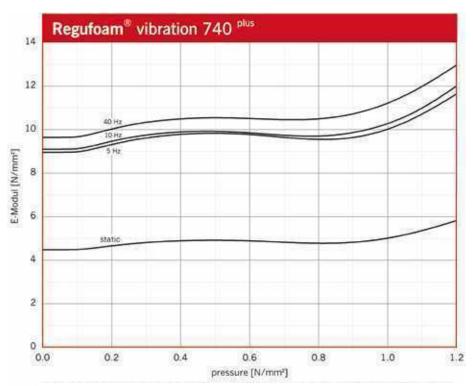
Regufoam®

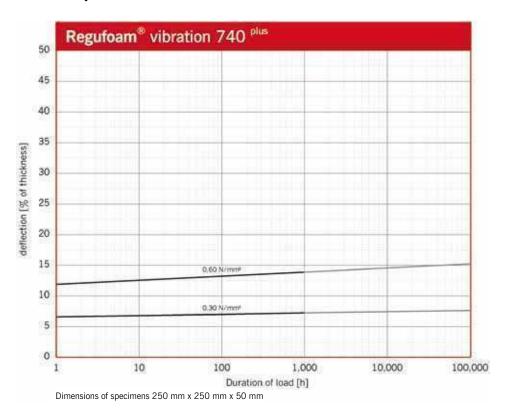
vibration 740 plus

Regufoam®

vibration 740 plus

Modulus of Elasticity




Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.25 mm. Dimensions of specimens 250 mm x 250 mm x 50 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.25 mm. Dimensions of specimens 250 mm x 250 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

N/mm²

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load

0.85 N/mm²

Continuous and variable loads/operating load range

0 to 1.20 N/mm²

Peak loads (rare, short-term loads)

up to 7 N/mm²

Static modulus of elasticity	Based on EN 826	5.8 - 7.2	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	11.0 - 16.5	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.10	[-]	Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	7.9	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	4.6	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	230	%	
Tear resistance	Based on DIN ISO 34-1	20.0	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.6 0.75	[-] [-]	Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	1241	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	58		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	35	%	dependent on thickness, test specimen h = 25 mm

Load Ranges

N/mm² ----2.50

0.85

-0.60

-0.45

-0.30

-0.22

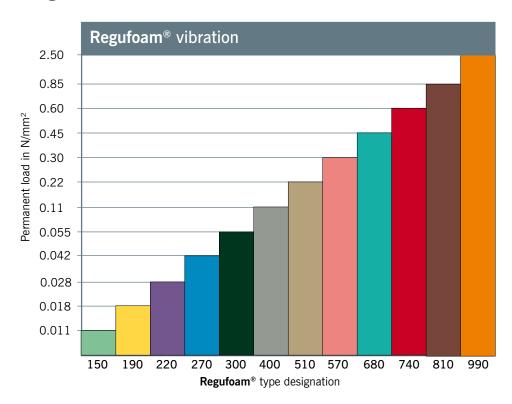
0.11

-0.055

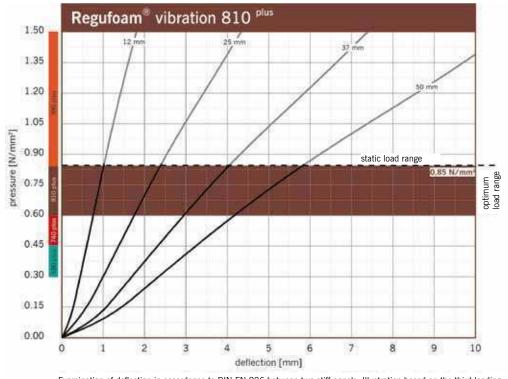
0.042

-0.028

-0.018


-0.011

190plus


150 plus

510plus

snId066

Load Deflection

Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens 250 mm \times 250 mm.

2.11

N/mm²

-0.85

0.60

-0.45

0.30

0.22

0.11

-0.055

-0.042

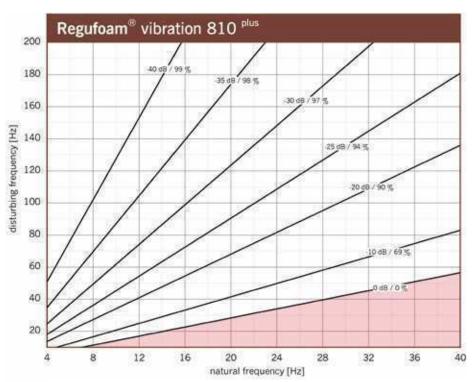
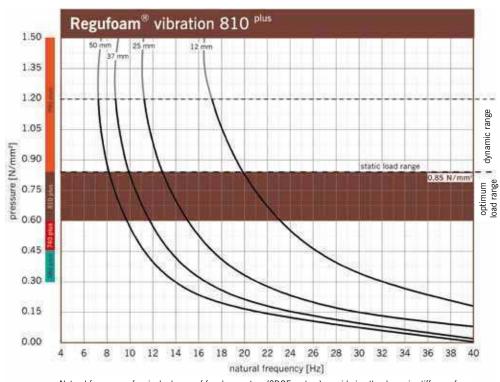
-0.028

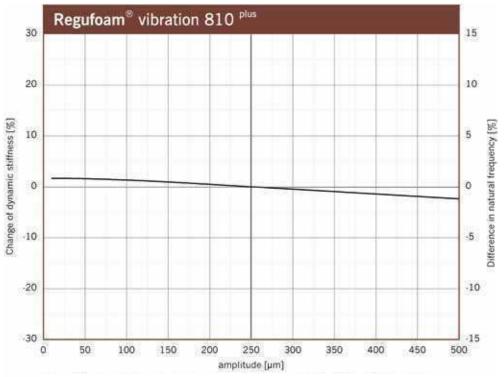
-0.018

-0.011

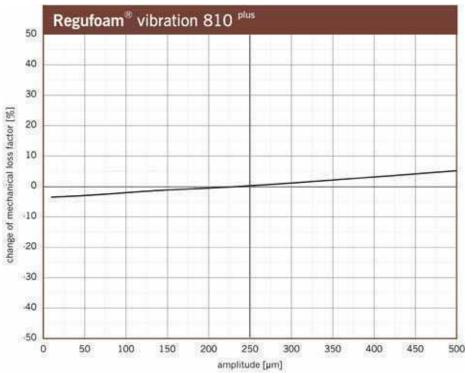
5

Vibration Isolation


Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam**® vibration 810 ^{plus}. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency



Natural frequency of a single-degree-of-freedom system (SDOF system) considering the dynamic stiffness of $Regufoam^{\circ}$ vibration 810 plus on a rigid base. Dimensions of test specimens 250 mm x 250 mm.

Influence of Amplitude

Change of the dynamic stiffness due to changes in amplitudes. Average for 5 Hz, 10 Hz and 40 Hz excitation. Sinusoidal excitation at a constant mean load of $0.85 \, \text{N/mm}^2$, dimensions of the specimens $250 \, \text{mm} \, \text{x} \, 250 \, \text{mm} \, \text{x} \, 25 \, \text{mm}$. Natural frequency of a single-degree-of-freedom system (SDOF system) on a rigid base.

Change ot the mechanical loss factor due to changes in amplitudes. Sinusoidal excitation at a constant mean load of $0.85\ N/mm^2$, dimensions of the specimens $250\ mm\ x\ 250\ mm\ x\ 25\ mm$.

Modulus of Elasticity

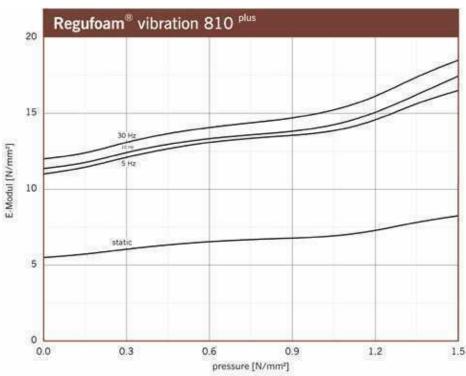


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of \pm 0.10 mm. Dimensions of specimens 250 mm x 250 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

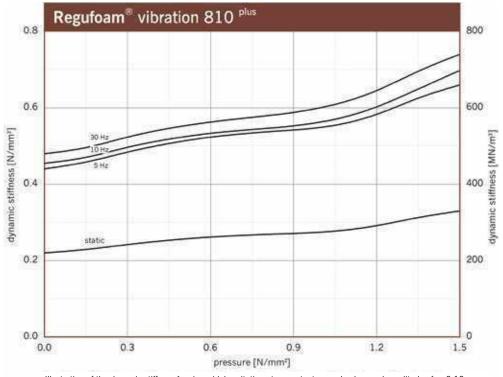
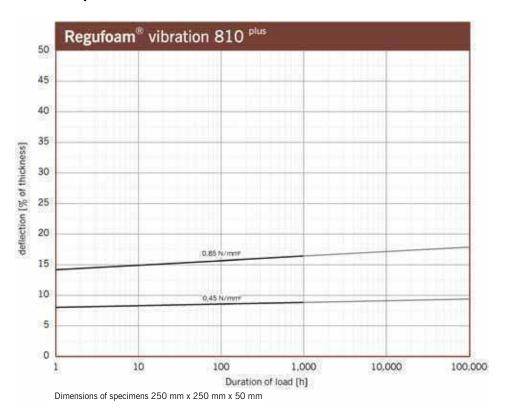



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.10 mm. Dimensions of specimens 250 mm x 250 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.

N/mm²

Standard forms of delivery, ex warehouse

Rolls

Thickness: 12 and 25 mm, special thicknesses on request

Length: 5,000 mm, special lengths available

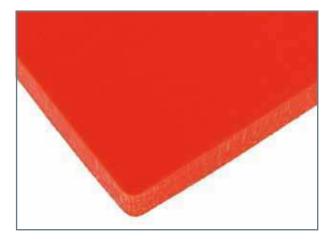
Width: 1,500 mm

Stripping/Plates

On request

Die-cutting, water-jet cutting, self-adhesive versions possible

Continuous static load


2.5 N/mm²

Continuous and variable loads/operating load range

0 to 3.5 N/mm²

Peak loads (rare, short-term loads)

up to 8.0 N/mm²

Static modulus of elasticity	Based on EN 826	20.0 - 78.0	N/mm²	Tangential modulus, see figure "Modulus of elasticity"
Dynamic modulus of elasticity	Based on DIN 53513	41.0 - 160.0	N/mm²	Depending on frequency, load and thickness, see figure "dynamic stiffness"
Mechanical loss factor	DIN 53513	0.09		Load-, amplitude- and frequency-dependent
Compression set	Based on DIN EN ISO 1856	8.6	%	Measured 30 minutes after decompression with 50% deformation / 23 °C after 72 hrs
Tensile strength	Based on DIN EN ISO 1798	6.9	N/mm²	
Elongation at break	Based on DIN EN ISO 1798	190	%	
Tear resistance	Based on DIN ISO 34-1	34.5	N/mm	
Fire behaviour	DIN 4102 DIN EN 13501	B2 E	[-] [-]	Normal flammability
Sliding friction	BSW-laboratory BSW-laboratory	0.5 0.6		Steel (dry) Concrete (dry)
Compression hardness	Based on DIN EN ISO 3386-2	3640	kPa	Compressive stress at 25 % deformation test specimen h = 25 mm
Rebound elasticity	Based on DIN EN ISO 8307	55		dependent on thickness, test specimen h = 25 mm
Force reduction	DIN EN 14904	20	%	dependent on thickness, test specimen h = 25 mm

Load Ranges

N/mm² ---2.50

-0.85

-0.60

-0.45

-0.30

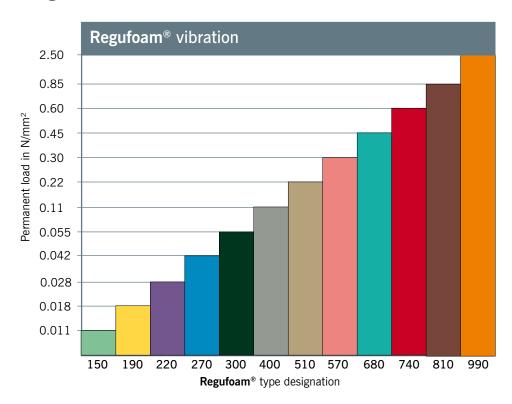
-0.22

0.11

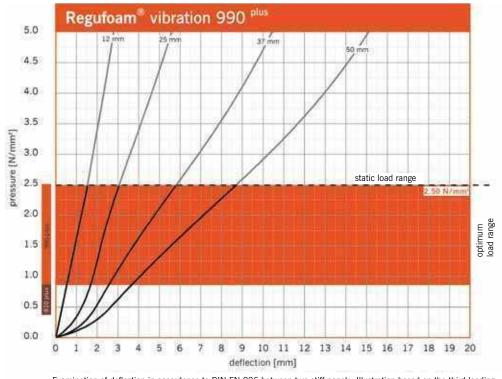
-0.055

0.042

-0.028


-0.018

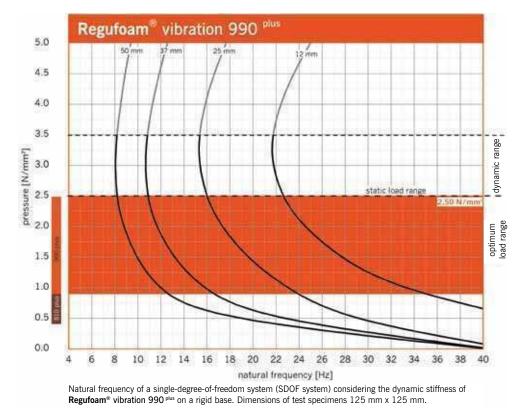
-0.011


190plus

150 plus

510plus

Load Deflection


Examination of deflection in accordance to DIN EN 826 between two stiff panels. Illustration based on the third loading. Velocity of loading and unloading 20 seconds. Tested at room temperature. Dimensions of test specimens $125 \text{ mm} \times 125 \text{ mm}$.

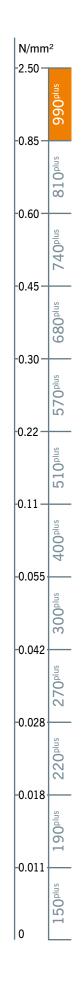

Vibration Isolation

Illustration of the isolation efficiency of a single-degree-of-freedom system (SDOF system) on a rigid base with **Regufoam®** vibration 990 plus. Parameter: power transmission (insertion loss) in dB, isolation factor in %.

Natural Frequency

Influence of Amplitude

Regufoam®

In order to get information of changes in mechanical loss or dynamic stiffness due to changes in amplitudes please ask technical staff of BSW.

vibration 990 plus

Regufoam®

Modulus of Elasticity

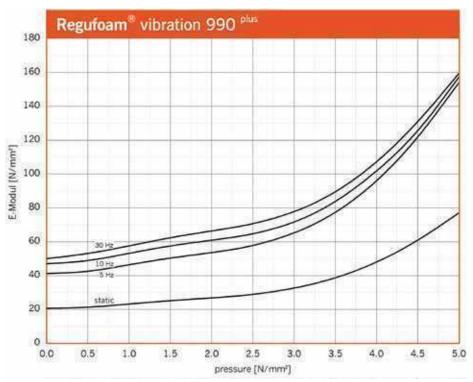


Illustration of the dynamic modulus of elasticity for sinusoidal excitation at a constant mean load and an amplitude of $\pm~0.10$ mm. Dimensions of specimens 125 mm x 125 mm x 25 mm; static modulus of elasticity as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Dynamic Stiffness

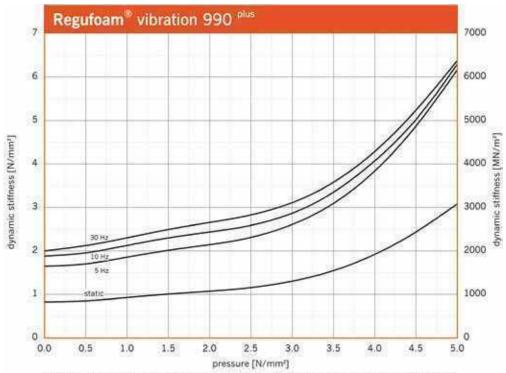
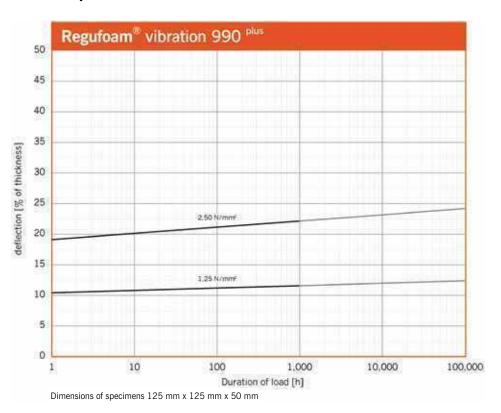



Illustration of the dynamic stiffness for sinusoidal excitation at a constant mean load an and amplitude of \pm 0.10 mm. Dimensions of specimens 125 mm x 125 mm x 25 mm; static stiffness as a result of the tangent modulus of the spring characteristic. Tested in accordance with DIN 53513.

Long-Term Creep Test

Exclusion of Liability

Technical services and offers based on these are subject to our General Terms and Conditions of sale, a copy of which can be found on our website www.bsw-vibration-technology.com. Special attention should be paid to paragraphs 4 and 5. In so far, please be advised as follows: Our expertise is the development and manufacturing of products. With our recommendation we can only assist you in selecting a product that is suitable for your demand. However, we cannot act as your architect or consulting expert. This would only be possible subject to a separately concluded service contract that we would have to bill you for. Such contracts are not part of our scope of supply and services. Hence, our recommendation does not lay claim for its correctness. Guarantees do only apply to the technical properties of the material supplied.